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Abstract

This note attempts to give a detailed error analysis of Reciproot
Algorithm proposed by Kahan and Ng in 1986. It is showed that
the algorithm yields correctly rounded square root under all rounding

modes.

1 Initial Approximation

Let 2¢ and 1 be the leading and the trailing 32-bit words of a floating point
number z (in IEEE double format) respectively
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Foundation under grant No. ASC-9005933, and by the National Science Infrastructure
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By performing shifts and subtracts on g and yo (both regarded as integers),
we obtain a 7-bit approximation of 1/y/x as follows.

k := 0x5fe80000— (xo > 1);
Yo = k—"T2[63&(k > 14)].

Here k is a 32-bit integer and T'2[-] is an integer array containing correction
terms. Now magically the floating value of y (y’s leading 32-bit word is yo,
the value of its trailing word 1 is set to zero) approximates 1/y/x to more
than 7-bit.
Value of T2[64] are This

table needs to

0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xal395, Oxbe7a, 0xd866,
be checked!

0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0%x15c98,0x16e34,0x17eb5f,
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5¢c4,0x1bb01,0x1bfde,0x1c28d,
0x1c2de,0x1c0db,0x1ba73,0x1bl11c,0x1a4b5,0x1953d,0x18266,0x16be0,
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
0x1d16d,0x1d77b,0x1dddf ,0xle2ad,0x1ebbf,0x1e6e8,0x1e654,0x1e3cd,
0x1df2a,0x1d635,0x1cb16,0x1be2¢c,0xlaede,0x19bde,0x1868¢e,0x16e2e,
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, O0xledd.

Now we prove our claimed accuracy of y as an initial approximation to
1/y/z. As a matter of fact, z can be written as = (—1)°2° x 1.f = 2° x 1.f.

Tedious analysis shows that
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where f is fi except its last bit is set to zero.

Case (i): e is odd and bits of f| are not all zero.

Denote o = 1.f]. Since 1 < a <2 —27" we have 272 < 1 — 5 < 2- 1
Assume for the moment that o > 1, then 1 — § < 27'. Write

«
1— 5 == 0.0@2@3@4@5@6 o doy.

63&(k > 14) = Oazasasasag which gives us valuable information to construct

correction terms. Let
t = 0.0azasa4asa6, €= 0.000001, = 27°,

Now we know that ¢t <1 —

N R

<t + ¢, which produces
2(1 —t) —2e < o < 2(1 —1).

(if t = 0, we have 2(1 —¢) < a < 2.)
We are required to choose a number d associated with those information
so that

1+1-— % —d approximates accurately enough.

2
V2 x1.f
As this approximation could not be correct to more than 20-bits, we can

restate it as

(84 .
1+1-— 5~ d approximates ——— accurately enough.

V2a

Elementary arguments show that the best d is

-2 -2
q - Itide— 2(2(1—t—c)) tl+d 2(2(1-1))
B 2
1 1
Ittte— =ttt - 75
B 2

IR 1 1 N 1
B 2 2\/1—t V1—t—¢)’
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except possibly for one case when the interval [2(1 — ¢ —¢€),2(1 —¢)] contains
\3/5, for which ¢ = 0.010111; = 0.359375. Individual check shows that this
gives no trouble. To find the largest error in using 1+1— 5 —d to approximate

\/%, it suffices for us to look at

2
2(2(1 — 1))

B e+1 1 1
2 2\ VT—t—¢ VI—1

€ 1
:‘5(1_<1_t_6>m+<1_t>m)’

whose absolute value for all possible 0 < ¢ < 27! is less than or equal to
£ x 04941 < § =275

Case (ii): e is even and bits of f| are not all zero.

Denote o = 1.f]. Since 1 < a <2 —27" we have 27! +2720 < ?’_Ta < 1.
Assume for the moment that « > 1, then ?’_Ta < 1. Write

14+t—d—

33—«
2

== 0.1@2@3@4@5@6 s doy.

63&(k > 14) = lasasasasag which gives us valuable information to construct

correction terms. Let
t = 0.1azasasasag, €= 0.000001, = 27°,

Now we know that ¢ < ?’_Ta <t + ¢, which produces

3—2(t4¢) <a <3 -2t

We are required to choose a number d associated with those information
so that
3—« 2

1+ —— —d approximates —— accurately enough.

2 VIS
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As this approximation could not be correct to more than 20-bits, we can
restate it as
3 —
1+ — T4 approximates —= accurately enough.

2 Ve

Elementary arguments show that the best d is

1—|—t—|—6—m—|—1—|—t *32

2

€ 1 1
— 4t + ,
2 (¢3—2t \/S—Z(t—l—e))
except possibly for one case when the interval [3 — 2(¢ + ¢),3 — 2t] contains

\3/41, for which ¢ = 0.101101, = 0.703125. Individual check shows that this

gives no trouble. To find the largest error in using ?’_Ta — d to approximate

%, it suffices for us to look at
2

1—|—t—d—

1
(\/3—2t—|—6 \/3—%)

4
2 (1 (3= 2(t+e))V/3 =2+ (3 —21) 3—2(t+6)) ’
whose absolute value for all possible 0.15 < ¢ < 0.1111115, is less than or
equal to £ x 0.9543 ~ Q7067485
Case (iii): bits of f| are all zero.
In this case, « = 1. Now if e is odd, then £ = 0.100000,. The correspond-
ing d is gotten as in Case (ii). Computation shows the error cannot exceed

0.003502 ~ 2781576,
If e is even, then ¢ = 0.000000;. The corresponding d is gotten as in Case

(i). Computation shows the error cannot exceed 0.00386 ~ 2750172,
Now we reach the following conclusion: The initial guess gives up to 7

correct bits or more if e is even; while up to 8 correct bits or more if e is odd.
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2 Iteration Refinement

Apply Reciproot iteration three times to y and multiply the result by = to
get an approximation z that matches \/z to about 1 ulp. To be exact, we
will have

— 1.0654 ulp < z — /x < 1ulp. (3)

Set rounding mode to Round-to-nearest and sequentially do

y = y(1.5—0.52y7), (4)
y = y((1.5—27) — 0.52y%), (5)
z = ay, (6)
z = z40.52(1 — zy). (7)

To analyze the accuracy of y and z after each step, without loss of gener-
ality, we assume 1 < # < 4. (x =1 or 4 can be checked individually.) Then
1<\/5<2and1>ﬁ>0.12.

e After initial approximation and before (4): y can be written as
! +
=—+c¢
y \/5 b

where |e] < 278067485 4f | < 7 < 2; Je| < 277 if 2 < 2 < 4.

o After (4) and before (5): y can be written as

1
y = ﬁ—1.562\/_—0.563:1}—|—6/
1
= ——|—617

Va
where ¢ is for rounding errors. Note that if 1 < @ < 2, 1.562\/5 +
0.5¢3r < 271804M7 and if 2 < 2 < 4, 1.5¢2\/x + 05630 < 27164, As
rounding error at this stage are negligible unless ¢ ~ 2726, we conclude
that: |e] <272 4f 1 < 2 < 2; and || < 2714 if 2 < 2 < 4. Further

more ¢; < 0 unless it is of order 27°2.



Reciproot Algorithm—Correctly Rounded? 7

e After (5) and before (6): y can be written as

1 _ 1
y = ﬁ — 271 (ﬁ + 61) — 1.5z — 0562 + €’
1

ﬁ—ﬁza

where ¢” is for rounding errors. Note that if 1 < = < 2, 1.56%\/5 +
0.56:1))1' < 2729009967 and if 2 < x < 4, 1.562\/5—|— 0.5e3x < 273224 Ag

rounding error at this stage are negligible, we conclude that: 274 <
€ < 2729006 4f | « 2 < 2;and 27 < e < 272B i 2 < 2 < 4.

e After (6) and before (7): 2z = fl(zy) = \/T— €22 +€m, where |¢,, | < 2753

i.e., at most %ulp with respect to 1.
e Computations in (7): fl(zy) <1 and

fllzy)=1-— 2ea/T + 631’ + S + ¢+ (neg. terms),
T

G

where |e/ | <275 ie., at most iulp with respect to 1. From now on

2

“(neg. terms)” refers to some negligible terms in comparing with the

unit in the last place of a corresponding expression. No rounding error

in calculating

1 — fl(zy) = 265/ — 30 — n e, + (neg. terms).

VT
Note
F10.52(1 — zy))

= (Vo —ex+e6y) (62 T =g m — 77” + (neg. terms))
€m €

!
= € — 1.563:1;\/5 —3 = 77”\/5 + € + (neg. terms),

where |€/ | < 2753 |eyx]. Now

Fl(z+0.52(1 — zy))
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€m €

!
= \/E—ezx—l—em—l—ezx—lﬁe%x :1;—7—77”\/5
+er +er + (neg. terms)
!
= Vo — 1.563:1;\/5 + %ﬂ — %”\/5 + €/ + (neg. terms)
= Vatu,
where |el| <275, i.e., at most $ ulp with respect to 1. Note

€ e
m
— = =ty

<11+11+1l 1ul
—u —u —u = u
2 9 Sqwp TP o wp P

with respect to 1. On the other hand, 0 > —1.5¢3x/x > —0.0654 ulp if
1 <z <2,and 0 > —1.5¢2x/x > —0.0021 ulp if 2 < x < 4. Therefore
we have

—1.0654ulp < n < 1ulp.

We have just proved (3).

3 Final Adjustment

By twiddling the last bit of z it is possible to force z to be correctly rounded
according to the prevailing rounding mode as follows. Let r and ¢ be copies of
the rounding mode and inexact flag before entering the square root program.
Also we use the expression z4 ulp for the next representable floating numbers

(up and down) of z.

e Case RN—round-to-nearest: In this case, if z — \/z > %ulp, then do
z=z—ulp;if z — /z < —% ulp, then do z = z + ulp; otherwise z is

correctly rounded already.
Set rounding mode to round-toward-zero which means “chopped”.

We write z = \/z + 1 = \/z + L ulp + € where —1.564 ulp < ¢ < Lulp.
Note

z(z— ulp) = z*—2zx ulp
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= 242V + 10—z x ulp—1n x ulp
1 1
= :1;—|—26\/5—|—<§ulp—|—6) <e—§ulp)
1
= :1;—|—26\/5—|—62—1ulp2.
So z(z — ulp) > « if and only if

< i ulp® ulp®
€

e S :

As computations are supposed to be done under round-toward-zero, we

have fl(z(z — ulp)) > « if and only if (8) holds.

Theorem 1 There is no IEEE double precision floating point number
x such that

1
2 =+\r+ 5 ulp + ¢
is an IEEE double precision floating point number for some
ulp?

ek

On the other hand, we write z = \/z — % ulp — € where —1.5ulp < e <
0.5654 ulp. Note

0<ex<

z(z+ ulp) = z*+zx ulp
= 24 20/r +1* + V& x ulp+1n x ulp
BNV e (e
= :1;—26\/5+62—iulp2.
So z(z + ulp) > z if and only if
L ulp? ulp’

< < . (9)
VT 4 y/z + Lulp? 8z

As computations are supposed to be done under round-toward-zero, we

have fl(z(z + ulp)) > « if and only if (9) holds.

€
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Theorem 2 There is no IEEE double precision floating point number
x such that

1
z:ﬁ—ﬁulp—e

is an IEEE double precision floating point number for some

12
0<e< e

Se<3/

So the following adjustment

case RN: ... round-to-nearest
if (x<= z*(z-ulp)...chopped) z = z - ulp; else
if (x<= z*(z+ulp)...chopped) z = z; else z = z+ulp.

will produce a z with

1
|z — Vx| <§ulp

Proofs of the above theorems will be given in the next section at the

end of this note.

Case RZ or Case RM—round-to-zero or round-to-—oo: In this case, if
z > +/x, then do z = z— ulp; if z — /2 < —ulp, then do z = z + ulp;

otherwise z is correctly rounded already.
Reset rounding mode to round-to-+4oo.

Note z? > z if and only if 2 > \/z, which also holds in floating point
operations under RP. (z + ulp)? < z if and only if z — /2 < —ulp,

which also holds in floating point operations under RP.

So the following adjustment

case RZ:case RM: ... round-to-zero

or round-to-negative infinity
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if(x<z*z ... rounded up) z = z - ulp; else

if (x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp.

will yield correctly rounded result.

e Case RP—round-to-+oco. In this case, if —1ulp < z—/z < 0, then do
z =z + ulp; else if z — \/x < —ulp, then do z = z + 2ulp; otherwise

z is correctly rounded already.
Under rounding mode—round-to-zero.

Note if (z + ulp)? < z if and only if z — \/z < — ulp, which also holds
in floating point operations under RZ. (2 + ulp)? < < z? if and only
if —lulp <z —/x <0, which also holds in floating point operations
under R7Z.

So the following adjustment

case RP: ... round-to-positive infinity
if (x> (z+ulp)*(z+ulp) .. .chopped) z = z+2*ulp; else
if(x>z*z ...chopped) z = z+ulp.

will yield correctly rounded result.

To determine whether z is an exact square root of x, we notice an nec-
essary condition for z to be an exact square root of z is that the training
26 bits of z must be zero. So if the training 26 bits of 2z is not zero, raise
Inexact flag; else if e is odd and the 26th bit of z is 1 then z is not exact;
else if z? # x (at this moment fl(2?) = 2?), then z is not exact; otherwise z

is exact.
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4 Proofs of Theorems 1 and 2

Let us prove Theorem 1 first. Assume to the contrary, there were an IEEE
double precision floating point number x as described in the theorem. By

scaling = and z properly, we may assume that 1 < = < 4. Note
r = (22— §ulp—e)2
2 1 2 2
= z —zulp—l—zulp — 2¢z + eulp + €. (10)

As now, ulp = 27°2, and thus iupo = 27196 Tt is easy to see that in binary

form

2
zZ —Z ulp = d10p.G_10_2 "+ d_104,

where a;’s are either 1 or 0 and a4, ag cannot be 0 at the same time. Therefore

1
22 —Z ulp + 1 ulp2 = d1dg.d_1ad_9 """ Cl_10401,

which proves € could not be 0. If, however, ¢ > 0, then
1
0> —2ez+ e +culp = e(—22 4 e+ ulp) > —2¢ez > —1 ulp?.

Thus the binary expansion of 22 — zulp + culp + i ulp — 2ez + €% could not
match that of x, contradicting (10). Theorem 1 is proved.

To prove Theorem 2, we apply similar trick as we just did. Suppose we
had such an TEEE double precision floating point number = as described in

the theorem. Without loss of generality, we may assume 1 < x < 4. Note
1 2
r = (z—|—§ulp—|—e)
1
= z:z—l—z:ulp—l—ZulpZ—l—Zez—l—eulp—l—e2 (11)

As now, ulp = 27°2, and thus iulp2 = 27196 Tt is easy to see that in binary
form

2
24z ulp = d10p.0_10_92 " Ud_104,
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where a;’s are either 1 or 0 and a4, ag cannot be 0 at the same time. Since
1 2 2 —104
0<1ulp +2ez+eulp+ et <2777,

the binary expansion of z? + z ulp + i ulp2 +2ez+eulp + €% could not match
that of x, contradicting (11). Theorem 2 is proved.
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